--- title: "Introduction: From Clustering to Density Plots" output: rmarkdown::html_vignette description: > Network-based clustering of binary data. Optional adjustment for covariates. vignette: > %\VignetteIndexEntry{clustNet} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup} library(clustNet) ``` ## Clustering First, we need to learn the networks. Here, we simulate data from three clusters. This process takes around two minutes on a local PC. ```{r, message=FALSE, warning=FALSE, results='hide'} library(clustNet) # Simulate data k_clust <- 3 # numer of clusters ss <- c(400, 500, 600) # samples in each cluster simulation_data <- sampleData(k_clust = k_clust, n_vars = 20, n_samples = ss) sampled_data <- simulation_data$sampled_data # Network-based clustering cluster_results <- get_clusters(sampled_data, k_clust = k_clust) ``` ## Visualization of networks We can visualize the networks as follows. ```{r} # Load additional pacakges to visualize the networks library(ggplot2) library(ggraph) library(igraph) library(ggpubr) # Visualize networks plot_clusters(cluster_results) ``` ## Visualization of networks Finally, we can create a density plot of our clustering. ```{r} # Load additional pacakges to create a 2d dimensionality reduction library(car) library(ks) library(graphics) library(stats) # Plot a 2d dimensionality reduction density_plot(cluster_results) ```